$$CS 331, Fall 2024 Toby: -Cuts
lecture 14 (10/16) -Maxflaw
-minut
theorem
Cuts (Port V, Section 4.1) - How allows
(Much more on this next week...)
For $S \subseteq V$:

$$Cut(S) = \sum_{\substack{(u,v) \in E \\ V \notin S}} Cuv$$
("total capacity crossing from S to $V \mid S$ "$$

Example 5 S 20 0] 0 S 0 20 ς= 10

We only track
from
$$S \rightarrow V/S$$
 $cut(V/S) = 10 + 5 = 15$

Say that S is an S-t cut if SES, tES Separates S from t

S-t maxflow S-t minut

(laim: for any
$$G = (V_1 E, C), S \neq t \in V$$

S-t maxflow = S-t minut
(strong maxflow-minut theorem)
Sanity Check: if no S-t path, both = O
Weak Maxflow-minut theorem:
S-t maxflow = S-t minut
Proof: Flow must get from S to V/S
Contains S contains t
It only has $Cut(S)$ to do So-

More formally,
$$\partial f(s) = \sum_{u \in S} \partial f(u)$$

$$= \sum_{u \in S} \sum_{(u,v) \in E} f_{(u,v)} - \sum_{u \in S} \sum_{(v,w) \in E} f_{(v,w)}$$

$$= \sum_{(u,v) \in E} f_{(u,v)} - \sum_{(u,v) \in E} f_{(v,w)}$$

$$= \sum_{(u,v) \in E} f_{(u,v)} - \sum_{(v,w) \in E} f_{(v,w)}$$

$$= \sum_{(u,v) \in E} (u,v) - \sum_{(v,v) \in E} f_{(v,w)}$$

$$= \sum_{(u,v) \in E} (u,v) = (u+(S))$$

$$= \sum_{(u,v) \in E} (u+(S))$$

$$= \sum_{(u+(v) \in E} (u+(S))$$

$$= \sum_{(u+(v) \in E} (u+(S))$$

$$= \sum_{(u+(v) \in E} (u+(S))$$

Residual graph "What are all flows 1 Can 200 s.t. stay feasible?" let (un) EE. • If $O \leq f(u,v) \leq C(u,v)$: Add (un) to G, Capacity = (un) - fruits (un) to (, capacity = from) • |f(u,v) = (u,v): Only 200 backward edge (V(W) to (5, (Spacity = from) • $\int f(u,v) = 0$: Only 200 forward ROGR (UN) to (G, (Sprity = fund)

We can create à bigger flow. $f'_e = f_e + W + eeP (push W)$ $f'_e = f_e + eeP$ Still feasible (by construction). Still S-+ flow: $\mathcal{H}(n) = \mathcal{H}(n) - n + m = 0$ VESS, HZ if u participates h P $\partial f'(s) = \partial f(s) + W$ $> \mathcal{H}(\varsigma)$

Proof 2): Suppose S Can't reach +. let S= reachable from S $f \notin S$, no edges from $S \rightarrow || |S$ (LJim: F, S Sohisty (A) !!! let LES, VES. • $[f(w_i)] \in (f(w_i)) \in (f(w_i)) = (f(w_i))$ or forward edge in Gt => = · If (un) EE, similarly fun)=D Hence of (s) = (ut(S))

Maxflow
$$(G, s, t)$$
:
 $f \in all - zeroes$ vector in R^{E}
While $\exists P, s - t$ path in G^{f} :
 $W \in Width(P)$
 $f \notin f + (W along P)$
Petern f

- Shurtest path: relax tense edge
 Flow: push W units along dusmenting path
 Flow: push W units along dusmenting path
 St path E (5)
- · Search: explore unexplored vertex
- Genericalgos so far:

How algos (Part V, Section 4.3)

What path?

$$[des | : any path]$$

Suppose all Gracifies integers.
 $[nusiset : all Gracifies in G integers.$
 $Thus Can always push will flow liter.$
 $Puntime analysis:$
 $[df F^* = Maxflow Value.$
 $F^* \times O(un) = O(mF^*)$
 $trites Cost of from y
path, e.g. 6PS$

Any S-+ path =
$$\leq m$$
 paths
+ Circulations
(repeatedly peel off parks)
Thus, some path Can Carry $\frac{F^*}{m}$ flow
) max width $\geq \frac{F^*}{m}$ as claimed.
Every iter decreases (f maxflow (1-m)x
after mlos (F*) iters,
maxflow $\leq (1 - \frac{1}{m})^{mlos}(F^*)$ F^*
 $\leq \exp(-\log(F^*))$ $F^* \leq 1$